Student Number:	

2011 YEAR 12 TRIAL HSC EXAMINATION

MATHEMATICS

Staff Involved: THURSDAY 4TH AUGUST

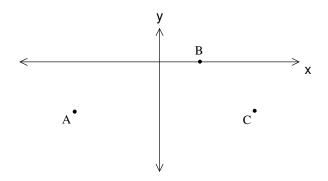
- KJL
 GPF
 RMH
 BJB*
 TZR
 DZP
 GIC
 AJD
- JGD*

110 copies General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Write your Barker Student Number on all pages of your answers
- Board-approved calculators may be used
- A Table of Standard Integrals is provided at the back of this paper which may be detached for your use
- ALL necessary working MUST be shown in every question
- Marks may be deducted for careless or badly arranged working

Total marks - 120

- Attempt Questions 1 10
- All questions are of equal value
- BEGIN your answer to EACH QUESTION on a NEW PIECE of the separate lined paper
- Write only on ONE SIDE of the separate lined paper



Total marks - 120 Attempt Questions 1 - 10 All questions are of equal value

Answer each question on a separate A4 lined sheet of paper.

Marks [START A NEW PAGE] **Question 1** (12 marks) Evaluate, to 3 significant figures, $\frac{\sqrt{9^2 + 144}}{14 - 3}$ 2 (a) Simplify fully $\frac{3}{x+3} - \frac{1}{x-3}$ (b) 2 (c) If $\frac{14}{3+\sqrt{2}} = a+b\sqrt{2}$, find the values of a and b 2 Solve |4x-1| = 3(d) 2 Factorise fully: $2x^3 - 54y^3$ 2 (e) Given $\log_a 3 = 0.6$ and $\log_a 2 = 0.4$, find $\log_a 18$ 2 (f)

Question 2 (12 marks) **[START A NEW PAGE]**

The coordinates of the points A, B and C are (-3, -2), (1, 0) and (5, -2) respectively

- (i) Calculate the length of the interval AB
- (ii) Find the gradient of the line AB
- (iii) Show that the equation of line l, drawn through C parallel to AB is x 2y 9 = 0
- (iv) Find the coordinates of D, the point where *l* intersects the *x*-axis
- (v) What is the size of the acute angle (to the nearest degree) made by the line AB with the positive direction of the *x*-axis?
- (vi) Hence, determine the size of $\angle ABD$
- (vii) Find the perpendicular distance of the point A from the line l 2
- (viii) Find the area of quadrilateral ABDC 2
- (ix) Sketch the line l and shade the area satisfied by the following simultaneously $x \ge 0$, $y \le 0$, $x 2y 9 \ge 0$

1

Question 3 (12 marks) **[START A NEW PAGE]**

- (a) Differentiate with respect to x:
 - (i) $3\tan x$
 - (ii) $(5-2x)^7$
- (b) Find:

(i)
$$\int_{0}^{1} 3\sqrt{x} \ dx$$

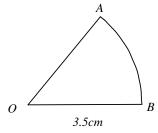
(ii)
$$\int \frac{8x+10}{2x^2+5x} \, dx$$

(c) A curve y = f(x) has the following properties in the interval $a \le x \le b$: 2 f(x) > 0, f'(x) > 0, f''(x) < 0 Sketch a curve satisfying these conditions.

 $G \overset{\bullet}{\longrightarrow} E$

In the diagram, AB = AE, $AC \parallel DF$, $\angle ABG = 146^{\circ}$ and $\angle AED = x^{\circ}$

- (i) Copy this diagram into your writing booklet and place all the information onto the diagram.
- (ii) Find the value of x, giving complete reasons.


Marks

(a) In $\triangle RST$, $\angle RTS = 150^{\circ}$, ST = 3cm and RT = 5cm. Find the length of RS correct to one decimal place.

2

(b) A sector *AOB* of a circle has a radius of 3.5cm. Its perimeter is 9.5cm.

NOT TO SCALE

(i) Find the length of the arc AB

1

(ii) Find the size of $\angle AOB$ in radians

2

(iii) Find the area of the sector AOB

2

(c) Is $f(x) = \frac{3^x + 3^{-x}}{2x^2}$ an odd function or an even function?

2

Give reasons for your answer.

(d) Solve $2^{2x} - 9(2^x) + 8 = 0$

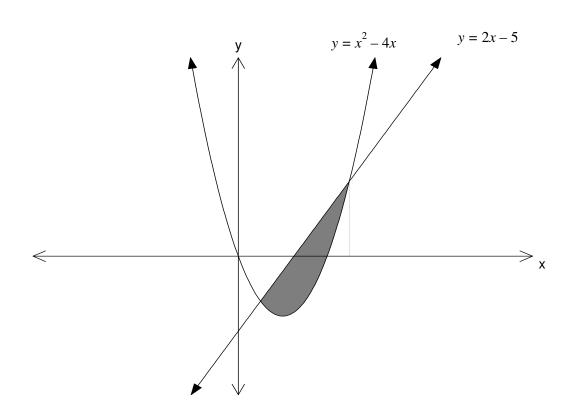
3

Questi	ion 5	(12 marks) [START A NEW PAGE]	Marks
(a)	Con	sider the function $f(x) = x^3 + 6x^2 + 9x + 4$ in the domain $-4 \le x \le 1$	
	(i)	Find the coordinates of any stationary points and determine their nature.	3
	(ii)	Determine the coordinates of its point(s) of inflexion.	2
	(iii)	Draw a sketch of the curve $y = f(x)$ in the domain $-4 \le x \le 1$ clearly showing all its essential features.	2
	(iv)	What is the maximum value of the function $y = f(x)$ in the domain $-4 \le x \le 1$? 1
(b)	Find	the equation of the tangent to $y = \ln(3x + 1)$ at the point (2, 5)	2
(c)	Solv	$\log_7 x^2 = 3$	2

Question 6 (12 marks)	[START A NEW PAGE]

- (a) If $\sin\theta = -\frac{8}{17}$ and $\tan\theta > 0$, find the exact value of $\cos\theta$

2


Marks

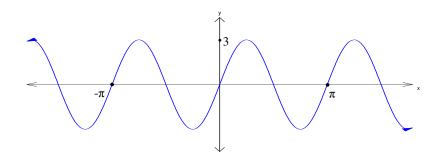
- (b) The first four terms of a sequence are 3, 6, 9, 12
 - (i) Show that 102 is a term of this sequence

- 2
- (ii) Hence, or otherwise, find the sum of the terms of this sequence between 100 and 200
- 3
- (c) (i) Show that $y = x^2 4x$ and y = 2x 5 intersect when x = 1 and x = 5
- 2

(ii) Hence, find the shaded area below

3

End of Question 6


Question 7 (12 marks) **[START A NEW PAGE]**

- (a) Evaluate $\lim_{x \to 3} \frac{x^2 x 6}{x 3}$
- (b) The curve $y = ax^3 + bx$ passes through the point (1, 7). The tangent at this point is parallel to the line y = 2x 6. Find the values of a and b.
- (c) Find the equation of the locus of P(x, y), if P is always equidistant from A(3, 1) and B(1, 3). Give a geometric description of this locus.
- (d) A retirement fund pays 8% per annum compound interest on the money invested in it. What investment must a worker make at the beginning of each year if he wishes to retire with a lump sum of \$200 000 after 25 years (with his last investment at the beginning of the 25th year)?

 3

Question 8 (12 marks) **[START A NEW PAGE]**

(a)

Not to scale

For the above graph, write down:

(i) the period of the function

1

(ii) the amplitude of the function

1

(iii) a possible equation of the function

1

(b) Given that $\frac{d}{dx}(xe^x) = xe^x + e^x$ evaluate $\int_0^2 \frac{xe^x}{2} dx$

3

(c) Use the trapezoidal rule with 5 function values to find an approximation to

$$\int_0^2 \frac{1}{x+1} \ dx$$

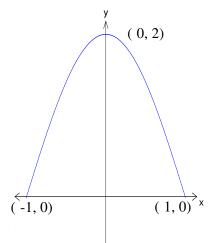
3

(d) Show that
$$\frac{\cos\theta}{1-\sin\theta} - \frac{\cos\theta}{1+\sin\theta} = 2\tan\theta$$

3

Question 9 (12 marks) **[START A NEW PAGE]**

- (a) If p, q and 32 are the first three terms of a geometric sequence and q, 4, p are the first three terms of another geometric sequence, find p and q.
- 4


(b) (i) Sketch the curve $y = \log_e x$

- 1
- (ii) The curve $y = \log_e x$, between x = 1 and x = e, is rotated 360° about the y-axis. Find the exact value of the volume of the solid formed.
- 4

3

(c) An ornamental arch window 2 metres wide at the base and 2 metres high is to be made in the shape of a cosine curve. Find the area of the window in terms of π ,

if
$$y = 2\cos\left(\frac{\pi}{2}x\right)$$
.

End of Question 9

			Marks
Que	stion	10 (12 marks) [START A NEW PAGE]	
(a)	petro	ing the normal operation of a petrol driven engine, the volume V litres of all left in the tank reduces at a rate $\frac{dV}{dt} = -3e^{0.4t}$ where t is measured in ites since the engine was switched on and the 100 litre tank was full.	
	(i)	At what rate is the petrol used, initially?	1
	(ii)	Use integration to show that volume remaining can be expressed as	
		$V = \frac{-30}{4}e^{0.4t} + 107.5$	2
	(iii)	How long can the machine operate until the tank is only half full? Give your answer correct to the nearest minute.	2
(b)	(i)	Find the value of x for which the function	
		$y = \frac{x^2 - x + 2}{x^2 - x + 1}$ is equal to $\frac{7}{3}$.	2
	(ii)	Show that the function $\frac{x^2 - x + 2}{x^2 - x + 1}$ can never exceed $\frac{7}{3}$	3
	(iii)	Hence, the range of this function must be $a < y \le \frac{7}{3}$ Find the value of a .	2
		End of Question 10	
		End of Paper	

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \quad \text{if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

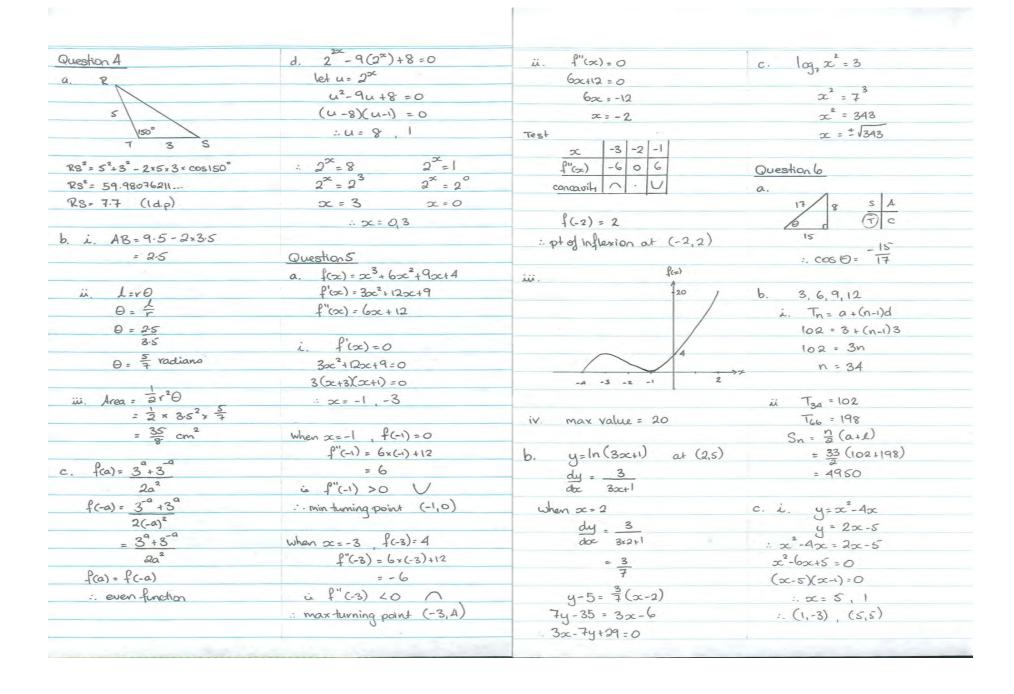
$$\int \sin ax \, dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

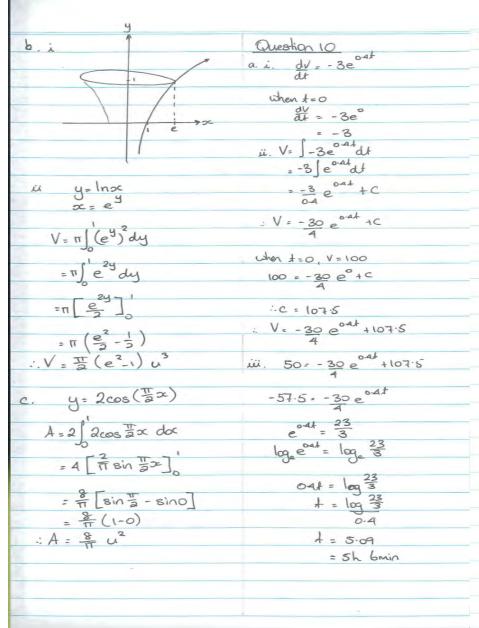
$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a}, \quad a > 0, \quad -a < x < a$$


$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln \left(x + \sqrt{x^2 - a^2} \right), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \ln \left(x + \sqrt{x^2 + a^2} \right)$$


NOTE: $\ln x = \log_e x$, x > 0

2 Unit mathematics	Trial Paper	2011 - Solutions

Question 1	Question 2	$vii. d = aoc+by+c $ $\sqrt{a^2+b^2}$	b. i. $\int_{0}^{3} 3\sqrt{x} dx = \left[\frac{3x^{2}}{3/2} \right]_{0}^{3}$
a. 15	i. A(-3,-2) B(1,0)	Va2+62	
= 1.3636	$d = \sqrt{(1+3)^2 + (0+2)^2}$	d = 1(-3)+(-2)(-2)+(-9)	= [200]
= 1.36 (3 sig. fig)	d = 16+4	$\sqrt{(1)^2 + (-2)^2}$	= 2-0
0 0	d = 120	d = 1-3+4-91	= 2
b. = 3 (x-3) - (x+3)	d = 215	V1+A	
(x+3)(x-3)		d = 1-81	$\frac{32x+10}{2x^2+5x}$
= 30c-9-x-3	u. m = 0+2	15	J 2x2 + 5x
x^2-9	ii. M= 0+2 1+3	:. d = <u>8</u>	
= 20c-12	= 1	15	$= 2 \int \frac{4x + 5}{2x^2 + 5x} dx = 2 \ln (2x^2 + 5x) + ($
x2-9			J 2x2+5x
	iii. $m = \frac{1}{2} c(5,-2)$	viii Area = In dist x AB	
c. = 14 x 3-12	$y+2 = \frac{1}{2}(x-5)$	= 8 x 2/5	c.
3-12 3-12	2y+4 = x-8	VS	
= 14(3-12)	:x-2y-9=0	= 16 unito2	
9-2	0	y.	a 6
= 2(3-12)	iv. x-intercepts occur when y=0	ix	X.
: 6-2\overline{2} = a+b\overline{2}	2-2(0)-9=0	97	d. i. / P
∴a=6 , b=-2	x =9	111111	* * /
,	:.D(9,0)	11/////	G - 146°/ 2
d. 4x-1/=3		- V///////	3/ /€
40x-1=3 $40x-1=-3$	v. m=tan0	V / ·	1
4x=4 $4x=-2$: tan0 = 1	x=0, y <0, x-2y-9=0	
$x=1$ $x=-\frac{1}{3}$	D = 26°33′54"	, ,	°C /F
: x=-1	: 0 = 27° (to neavest degree)	Question 3	ii. <abe= (angle="" 34°="" st.line)<="" sum="" td=""></abe=>
	0	a. i. d (3tanox) = 3sec ² x	(ABE= <aeb (base="" 1's="" a)<="" isos="" of="" td=""></aeb>
e. $2x^3 - 54y^3 = 2(x^3 - 27y^3)$			<abe (laeb="" +="" ldea)="180°</td"></abe>
= 2(x-3y)(x2+3x0	4+94²)	$\frac{d}{dx}(5-2x)^{\frac{7}{2}} + 7(5-2x)^{6} \times -2$	(co-int L's, ACLIDF)
0	0 0		· 24° + 24° + 2° - 190°
f. loga 18 = loga (32x2)	vi. <abd 180°-27°<="" =="" td=""><td>= -14 (5-22)6</td><td>x = 112°</td></abd>	= -14 (5-22)6	x = 112°
= 2log_3 + log_2	= 153°		
= 2×0.6 + 0.4			
= 1.6			

$A = \int_{0}^{\infty} (2x-5) - (x^{2}-4x) dx$	c PA = PB	Question 8	= 2cosOsinO
	0, 1,1	a. i. TT	cos²⊖
= 60c-5-x2doc	V(x-3)2+(4-1)2=V(x-1)2+(4-3)2	й. З	= 2 sin0
31	22-60c+9+4-24+1 = 2c2-20c+1+42-64+9	iii. 4=3sin2x	COSO
$= \left[3x^2 - 5x - \frac{x^3}{3}\right]^5$	40c-4y = 0	•	= 2tan0
	:. y = x	b. do (xex)= xex+ex	= RHS
= (25 + 7)	straight line through the origin with	, 2 ×	
= 10 3 unito 2	gradient = 1.	$\int_{0}^{2} \frac{xe^{x}}{2} dx$	Question 9
	0		
estion 7	d.	$=\frac{1}{2}\int_{-\infty}^{2}xe^{x}dx=\frac{1}{2}\left[xe^{x}-e^{x}\right]_{0}^{2}$	9 4 P
$\lim_{x\to 3} \frac{(x-3)(x+2)}{(x-3)}$	1st A = Mx (108)25	40	
x→3 (x-3)	2nd A2 = M x 1.0825 + Mx1.0824	= 2 (2e -e2)-(0-1)	9 = 32 9
$\lim_{x\to 3} (x+2)$	£	= \frac{1}{2}(e^2 +1)	q2= 32p0
x->3	200 000 = M (1.08+1.08°+ +1.08°5)		
=5	200000 = M x 1.08 (1.0825 - 1)	$c. \int_{0}^{2} \frac{1}{\alpha + 1} d\alpha$	4 = 4
	0.08	-6	16 = pq
). y=0003+box (1,7)	M = 200 000 x 0.08	5 0 12 1 12 2 5 1 18 12 18	$p = \frac{16}{9}$ @
7 = a(1)3+b(1)	1.08(1.0825-1)	9 1 3 3 3 3	9
7=a+b	M = 2533-107	1 5 1 22 1 237	sub (1) into (1)
	M = \$ 2533·11	$A = \frac{3}{2} \left[1 + \frac{1}{3} + 2 \left(\frac{2}{3} + \frac{1}{5} + \frac{2}{5} \right) \right]$	92 = 32 × 16
y'= 3ax2 + 6		= \frac{1}{4} \times \frac{67}{15}	98 = 512
y'= 2 when oc= 1		= 67	9 = 8
2 = 3a(1)2+b			sub q=8 into 3
2 = 3a +b		= 1.1166	P= 16
1 .		÷ 1·12	
a+b=7			P=2
3a+b=2		d. LHS = coso _ coso	:- P=2, q=8
-2a = 5		1-sin0 1+sin0	
a = - 5		= (050(1+ sin0) - cos0(1-sin0)	
5		(I-sin0)(I+sin0)	
: \(\frac{5}{2} + b = 7		= cos0+cos0sin0-cos0+cos0sin0	
$b = \frac{19}{2}$		l -sin²⊖	

$0. i x^2 - x + 2 = 7$	iii. $\lim_{x \to \infty} x^2 - x + 2$
x2- x+1 3	x→±∞ x2-x+1
302-30c+6 = 70c2-70c+7	1 2
$4x^2-4x+1=0$	$= \lim_{n \to \infty} 1 - \frac{1}{2} + \frac{2}{2^2}$
(2x-1)(2x-1) =0	x = ±00 1 - 1/2 + 1/22
$x = \frac{1}{2}$	= 1
	: a=1
$\ddot{u} \dot{y} = vu' - uv' u = x^2 - x + 2$	

$$\begin{array}{ccc}
\ddot{u} & y' = \frac{vu' - uv'}{v^2} & u = x^2 - x + 2 \\
& v' = 2x - 1 \\
& v' = 2x - 1
\end{array}$$

$$y' = \frac{(2x-1)(x^{2}-x+1) - (2x-1)(x^{2}-x+2)}{(x^{2}-x+1)^{2}}$$

$$y' = \frac{(2x-1)(x^{2}-x+1 - x^{2}+x-2)}{(x^{2}-x+1)^{2}}$$

$$y' = \frac{-2x+1}{(x^{2}-x+1)^{2}}$$

stat pts occur when
$$y'=0$$

$$\frac{-2x+1}{(x^2-x+1)^2}=0$$

$$-2x+1=0$$

$$x=\frac{1}{2}$$

\propto	0	1 2	1
4	1	0	-1
slope	1	-	1

.: max at $\infty = \frac{1}{2}$.: graph will not exceed $y = \frac{7}{3}$